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Abstract

We propose to use Simulated Annealing to solve the cor-
respondence problem between near-isometric 3D shapes.
Our method gains efficiency through quickly upsampling
a sparse correspondence by minimizing the embedding er-
ror of new samples on the surfaces and applying simu-
lated annealing to refine the result. The algorithm alter-
nates between sampling additional points on the surface
and swapping points within the current solution accord-
ing to Simulated Annealing theory. Simulated Annealing
is a probabilistic method and less prone to get stuck in lo-
cal extrema which allows our method to obtain good re-
sults on the NP-hard quadratic assignment problem (QAP).
Our method can be used as a stand-alone correspondence
pipeline through a robust initial seed generator as well as to
densify a set of sparse input matches. Furthermore, the use
of locality sensitive hashing to approximate geodesic dis-
tances reduces the computational complexity and memory
consumption significantly. This allows our algorithm to run
on meshes with over 100k points, an accomplishment that
few approaches tackling the QAP directly achieve. We show
convincing results on datasets like TOSCA and SHREC’19
Connecitvity.

1. Introduction
Shape correspondence problems occur in a great variety

of 2D and 3D vision and graphic processing tasks. They
can be applied in many applications, e.g. texture transfer,
recognition or statistical shape models. These applications
become more and more relevant with the rise of VR and
AR, and the need for scalable algorithms increases with the
precision of acquisition hardware. In its essence, the shape
correspondence problem aims to find a semantically mean-
ingful mapping between the points on two compact two-
dimensional Riemannian manifolds X and Y , i.e. a func-
tion ϕ : X → Y . The definition of semantically meaningful
can vary depending on the application but it is common to
choose pair-wise features, e.g. distance values, to be pre-
served. In case of a rigid transformation between X and Y

this translates to preserving the Euclidean distance between
points and the problem has six degrees of freedom, which
makes it efficiently solvable. In more general cases and with
discretized shapes this can be formulated as a version of the
NP-hard Quadratic Assignment Problem (QAP):

Π∗ = arg max
Π∈Pn

∑
x,y∈X

kX (x, y) · kY(Π(x),Π(y)) (1)

Here, Pn denotes the set of n-permuations assuming
both shapes are discretized with n points. A wide variety
of relaxations for this formulation exist (see Section 2) but
are often still not feasible for a large number of vertices.
Another problem with solving Eq. (1) exactly is the under-
lying assumption that is ϕ is an bijection. While this is rea-
sonable in the continuous formulation, it requires the same
amount of vertices on both shapes. This assumption is often
not met in real-world data and needs to be artificially en-
forced through subsampling which adds additional pre- and
postprocessing and might distort the result, for example for
partial shapes.

Contribution In this paper, we propose to compute a cor-
respondence between two 3D shapes by approximating the
solution to Eq. (1) using a simulated annealing strategy [17].
Our main contributions are the following:

• We propose the first scalable application of Simulated
Annealing to the 3D non-rigid correspondence prob-
lem.

• Although QAPs are a NP-hard problem, we approx-
imate (1) in O(n log(n)

√
n) runtime where n is the

number of vertices.

• We propose to use a variant of locality sensitive hash-
ing to reduce the memory requirement to O(n

√
n).

• In numerous experiments, we demonstrate that the pro-
posed algorithm can be used both as a stand-alone
framework with a seed generator as well as complete
and denoise a set of sparse input matches. It provides
state-of-the-art results and scales to over 50K vertices.

1
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2. Background & Related Work
In this section we summarize the general background

needed to understand the rest of the paper and related work
most relevant to our method. A more general survey of re-
cent shape correspondence methods can be found in [27].

We denote the input triangular meshes as X and Y and
assume that they are proper discretizations of Riemannian
2-manifolds embedded in 3D. The set of vertices of each is
denoted by {x1, ..., xn} and {y1, ..., ym} respectively.

2.1. Quadratic Assignment Problem

Modeling the correspondence problem in variants of the
Quadratic Assignment Problem (QAPs) has a long history
[3]. If both shapes have the same number of points, then
the correspondence φ can be represented by a permutation
π, which maps the vertices {x1, ..., xn} of the triangluar
mesh X to the vertices {y1, ..., yn} of the triangluar mesh
Y . Following the approach of [33], the optimal permutation
π can be described as the solution to a quadratic assignment
problem (QAP) with the objective

max
π

∑
1≤i,j≤n

kX (xi, xj)kY(yπ(i), yπ(j)). (2)

This objective is also referred to as the Koopman-Beckman
version of a QAP. kX and kY denote an arbitrarily chosen
measure of the closeness between two points on X and Y .
However, as the original formulation, all variants are NP-
hard and in general not tractable for instances with more
than a few dozen points. This also holds for the Quadratic
Assignment Matching (QAM) [8]. It was even shown that
finding a ε-approximate in polynomial time for any ε is only
possible if P=NP [28].

Relaxations of the permutation matrix constraint are a
popular way to reduce the computational complexity of (1).
Spectral relaxations as introduced in [18] replace permuta-
tions with a Frobenius norm constraint which reduces the
optimization to an eigenvector problem. Other popular re-
laxations consider doubly-stochastic (DS) matrices instead
[5, 10] which preserves the optimum for concave energies
and on specific graph matching cases [1] but not for general
non-convex energies. Other relaxations can be shown to be
tight but are still to computationally demanding to apply to
high-resolution scans [4, 14].

The Product Manifold Filter (PMF) [34] solves the same
optimization problem as our work with a series of Linear
Assignment Problems (LAPs). However, it cannot work as
a stand-alone method, and only works on full shapes with
the same resolution and requires a (possibly sparse) initial-
ization. Additionally, the size of the problem is restricted
by the size of LAP that can be solved, usually not more
a few thousand vertices. PMF has been extended to work
with features as initialization and on much higher resolu-
tions with a multi-scale approach in [33], but cannot densify

sparse inputs anymore. Both [34] and [33] are prone to get
stuck in local optima without chance of recovering whereas
our framework starts with a variety of initializations and ap-
plies a probabilistic approach which makes it more flexible.

2.2. Approximation Algorithms

Approaches that do not have any guarantees on being
close to the optimal solution can still work well in practice
and actually be more efficient. One class of algorithms, that
our method also falls into, looks for small step improve-
ments over the current solution. A famous member of this
class is [13] solving graph isomorphism. If the improve-
ment step has a probabilistic condition it is possible to es-
cape local optimal in very non-convex problems.

Genetic algorithms [22] fall under probabilistic opti-
mization with an idea based on evolution theory, namely
mutation and selection. This has been successfully ex-
plored for 3D correspondences in [26] but is not efficient
enough to produce a dense correspondence on high resolu-
tion shapes. [26] is similar to our pipeline in that its starts
with a very sparse set of correspondences that are refined
and expanded iteratively but only generates a fixed sized
sparse solution where we can sample indefinitely. [11] also
applied a genetic algorithm for 3D shape correspondence
but operates on maps. This scales to high resolutions but
relies on a reliable method to convert the map back to a
pointwise correspondence.

Simulated Annealing, which we use in this work, is a
variant of the Metropolis algorithm [21] that can approxi-
mate the global solution for complex functions and solution
spaces that defy conventional optimization techniques [24].
A solution to a discrete optimization problem is identified
by the physical state of a set of atoms. Starting with an
initial state and temperature t, a random generator produces
displacements of the atoms which change the energyE (ob-
jective function) so that the system of atoms remains ad-
missible. A displacement du is applied to a randomly cho-
sen atom and then the change in energy dE is assessed. If
dE < 0 the displacement is accepted. Otherwise

P (dE) := e−
dE
kt (3)

is evaluated, where k is the Boltzmann constant. P (dE) is
compared with a random variable X that is uniformly dis-
tributed in (0, 1) and we accept the displacement if X <
P (dE). The temperature t controls the flexibility to accept
changes increasing the objective function value and is grad-
ually lowered over the course of the optimization. In the
case of the QAP, the random displacements are transposi-
tions and the corresponding change in energy can be com-
puted in O(n). Simulated Annealing has been used to find
point correspondences for stereo vision [30] or protein pre-
diction [29]. However, these algorithms do not scale to large

2
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Seed Generator

Sparse Input
Matches

Insertion Phase 1

Swapping

Insertion Phase 2

Sw
ap

pi
ng

ZoomOut

Figure 1: Overview over our pipeline. The initialization can either be a set of sparse input matches or produced by our
proposed seed generator. The next phase alternates between inserting new points and swapping the current (sparse) solution
according to Simulated Annealing strategies until 250 points are filled in. After that the solution is filled to 70% of all points
with a final round of swapping. The final step is a round of post-processing with ZoomOut [20] to densify the solution.

candidate sets but instead operate on special interest points
or return a sparse set of correspondences.

3. Method
We propose to use Simulated Annealing (SA) to opti-

mize for the optimal permutation Π∗ in this QAP

Π∗ = arg max
Π∈Pn

∑
x,y∈X

kX (x, y) · kY(Π(x),Π(y)). (4)

We propose a specific choice for kX and kY :

kX (x, y) := e−dX (x,y) and kY(x, y) := e−dY(x,y),
(5)

where dX and dY denote the geodesic distance on X and
Y . This definition tries to incentivize smoothness because a
single point xi on X contributes the most to the optimal ob-
jective (2) if all points in its neighborhood have correspon-
dences on Y that are also in the neighborhood of Π(xi).
In SA the current solution and a neighboring one are eval-
uated in terms of energy (Eq. (4)), and the neighbor is ac-
cepted with a certain probability based on the energy change
and current temperature (see Section 2.2 for details). In
case of the correspondence problem the current solution is
a (sub)permutation Π and a neighbor is a subpermutation,
where two matches Π(x) = x′,Π(y) = y′ are switched
such that Π(x) = y′,Π(y) = x′. If at some point no more
random displacements are accepted, the system is ‘frozen’.

Due to the complexity of the problem for large number
of vertices n, we propose several adjustments to make SA
more efficient in both memory consumption and runtime.
We use locality sensitive hashing instead of calculating and
storing all geodesic distances, see Section 3.1. Furthermore,
we introduce a seed generator to produce a sparse initializa-
tion well suited for our algorithm in Section 3.5. Based on

the sparse initialization our algorithm gradually adds more
points (Section 3.3) while already refining the solution with
SA (Section 3.4). We focus on refining when the solution
is not dense because this allows to correct errors with less
swapping operations.

3.1. Locality Sensitive Hashing

We use locality sensitive hashing [12] instead of calcu-
lating the entire geodesic distance matrices for X ,Y . Cal-
culating the entire distance matrix is slow and not feasible
for high resolutions, since it contains n2 elements.

For a set of points S = {s1, ..., sn} and an arbitrary dis-
tance function d : S → R locality sensitive hashing approx-
imates the distances by selecting a suitable subset Z ⊂ S
with |Z| � n and considers the inequalities obtained from
the elementary triangle inequality:

max
z∈Z
|d(z, s)−d(z, s∗) | ≤ d(s, s∗) ≤ min

z∈Z
d(z, s)+d(z, s∗),

(6)
which holds for all s, s∗ ∈ S . The tightness of these in-
equalities is determined by S, d and Z. We demonstrate
how well we can approximate the geodesic distance d on a
sphere in Appendix B. Effectively, each z ∈ Z serves as a
hash function which projects all points {s ∈ S |d(s, z) = t}
to a single number t ∈ R+. If two points s1 and s2 have a
similar profile, i.e. d(s1, z) ≈ d(s2, z) for all z ∈ Z, then
s1 and s2 are likely to be very close on S. We call the points
contained in Z basis points.

Basis Points For X we choose
√
n many basis points by

farthest point sampling and precompute the order of near-
est basis points with decreasing kX (x, z) for each vertex x
on X . Most kX (x, z) will be close to 0 because kX (x, z)

3
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(i)

5 6
3

1

2
4

(ii)

Figure 2: Connections between basis points (orange) and
their surrounding vertices (blue). (i) For each x basis points
are sorted by their distance from x as labeled on the dashed
lines. (ii) The environment of a basis point b are all vertices
such that b is one of their three closest basis points (solid
lines).

decays exponentially with increasing distance. Assuming
that the points x and the basis points z are evenly dis-
tributed across the shape’s surface, only few basis points
will be close to x, and we define the environment of a ba-
sis points z as all points x to which z is among the three
closest basis points. As a result, the environments of close
basis points will be overlapping and each point on X will
be contained in the environment of exactly three basis point
environments. Close points to x can be computed by merg-
ing the environments of the basis points that are close to
x. Depending on how many close points we want, we can
change the number of close basis points that we consider.
This behavior will be important in Section 3.3. Note that
if |Z| = Θ(

√
n), then the cardinality of the environments

of the basis points will be Θ(
√
n) on average. Ordering the

basis points’ distances for each vertex on X can be done
with an efficient implementation in O(n|Z| log(|Z|)). The
construction and analysis on Y is equivalent.

3.2. Optimization

Our SA process has five stages that depend on the num-
ber of vertices k that have already been added to the so-
lution. First, we start on several sparse subpermutations
πk produced by the seed generator as the initial seed to
which we add gradually more matches. SA is applied regu-
larly during insertion until a sufficient number of points are
matched in Πk. In our experiments we found that the final
matching was already well characterized by approx. 250
points and [34] has shown that a well distributed subper-
mutation defines the dense solution well enough [34]. Each
system is ’frozen’ by another application of SA with tem-
perature 0 and each Πk is evaluated according to the QAP
objective (4). The Πk with the best score is finalized by
inserting the remaining points into the matching until 70%
of points are matched. We do not match all points through
the insertion process because the last insertions are prone to
produce outliers. A final SA phase with zero temperature is

applied and in the end ZoomOut [20] is used to produce a
dense solution. We focus on applying SA early because the
amount of swaps needed to escape a random, dense solution
is very high.

Inconsistent Mesh Resolution. A challenging nature of
the shape correspondence problem can be observed, when
the number of vertices on the mesh X is less than the num-
ber of vertices on Y . For instance, let the same Riemannian
manifold be discretized with two different resolutions, one
of which is much finer than the other. We cannot require
that an optimal correspondence in this case is bijective any-
more but if the number of vertices on X is much smaller,
injectivity is still possible. However, an optimal solution
will result in a matching in which all points on Y are clus-
tered together instead of being evenly distributed. This is
a direct result of the formulation of objective (2), as points
can only contribute to the sum if they are close together. The
Cauchy-Schwartz inequality, i.e. for two vectors x, y ∈ Rn

〈x, y〉 =

(
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
(7)

implies that 〈x, y〉 is maximal, if xi = yi. This sug-
gests that objective (2) is near optimal, if kX (xi, xj) ≈
kY(yπ(i), yπ(j)). Based on this, we propose a surrogate
function for adding new correspondences to a partial match-
ing which aims to preserve the measure of closeness be-
tween two points on X and their matchings on Y and can be
optimized greedily. Let X̂, Ŷ be the sets of already matched
points on X and Y respectively and let y(x̂) be the corre-
spondence of x̂ ∈ X̂ on Y . We match a new point x ∈ X
to

ŷ∗ = arg min
ŷ∈Y\Ŷ

∑
x̂∈X̂

|kX (x̂, x)− kY(y(x̂), ŷ)|. (8)

ŷ∗ is the point on Y whose embedding with respect to Ŷ is
the closest to how x̂ is embedded in relation to X̂ .

3.3. Point Insertion

Point insertion refers to the extension of the existing sub-
permutation by a a single pair of points (x, y) ∈ X × Y ,
which is done repeatedly during the optimization process.
As discussed in the previous subsection, for a given point x
on X we want to find a yet unmatched point y ∈ Y which
minimizes (8). There are two stages of how we choose the
point x based on how many points were already matched.

3.3.1 First stage:

The goal of the first stage is to achieve an evenly distributed
cover of both surfaces with the inserted points. We add a
new pair to the existing matching as follows

4
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Figure 3: Insertion process of the algorithm visualized on two shapes from the FAUST dataset. From left to right: 1. The 4
initial seed points generated by the seed generator are well distributed over the surface. 2. The first 25 points added within
the first phase of point insertion. 3. The first phase ends when 250 points were added. Until this point swapping operations
refine the solution regularly. 4. The second insertion phase stops when the majority of points were added. Some noise and
outliers are visible. 5. The final solution is dense and refined.

1. Select a point on x ∈ X by farthest point sampling
with respect to the already matched points.

2. Find the best k best matching basis points according to
Eq. (8) on Y which we call B̂ . We choose k = 3.

3. Among the points contained in the environments of
every basis point in B̂, match the optimal unmatched
point according to Eq. (8) with x.

Pre-selecting the basis points reduces the search space sig-
nificantly. We alternate between sampling a point from
X and finding a matching candidate on Y , and sampling
a point on Y and finding the best matching candidate on
X . This guarantees that the matched points are evenly dis-
tributed on both surfaces after the first phase terminates. In
our experiments we stop the first phase after 250 points have
been matched. The first phase of the insertion process is vi-
sualized in Figure 3 and already indicates that 250 matches
are dense enough to infer the rest of the correspondence.
Therefore, we switch to the second insertion stage which
efficiently interpolates the current result.

3.3.2 Second stage:

In the second phase, we sample a new point x randomly
from all yet unmatched points on X . During this phase
it might happen that we can no longer find an unmatched
point on Y in the environments of the best matching basis
points. To still enforce the smoothness condition whenever
possible, we use the following algorithm:

1. Find all already matched points that are close to x.
This can be efficiently done by looking up the top m
closest basis points around x and merging their envi-
ronments. We denote the obtained set by EX (x). Let
UEX (x) ⊂EX (x) contain only unmatched points and
MEX (x) only matched points.

2. For each element x̂ in MEX (x) find EY(ŷ(x̂)) analo-
gously to the step above where ŷ(x̂) denotes the cor-
respondence of x on Y . The set of candidates is now
Ê := Ê(x) =

⋃
x̂∈MEX (x)UEY(ŷ(x̂)). We stop ex-

panding Ê(x) if it contains too many elements to guar-
antee the time bounds of the algorithm.

3. If Ê = ∅ we gradually increase m by 3. Once m is
greater or equal to the number of basis points, Ê is
identical to the set of unmatched points on Y and we
are guaranteed to find a match.

4. The matching candidate y ∈ Ê for x is chosen accord-
ing to the score Eq. (8). When evaluating this score, we
only sum over MEX (x) instead of all matched points
X̂ .

We effectively search for a candidate y only among the
points that are close to the correspondences of the matched
points on X that are close to x and score it according to
them as well. Note that this only works well as both shapes
are sufficiently covered after the first phase of the insertion
process.

However, the matches that are inserted last often suffer
from not finding a good unmatched correspondence on Y
since most points on Y are already matched (this happens
after approx. 90% of all points were inserted). See Sec-
tion 4.2 for experiments showing the evolution of the qual-
ity of our results during insertion.

3.4. Swapping

The swapping according to SA strategy is applied multi-
ple times during the algorithm (see Section 3.2). During the
first insertion phase SA is applied repeatedly after a fixed
number of particles (in our experiments we used 10) has
been inserted using the same initial temperature. Since we
evaluate multiple seeds, we do not want a too high tempera-
ture because this would impair the diversity of the seeds. On

5
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Figure 4: Correspondence example of our method from
an input shape (left) with our method without ZoomOut
(middle) and with ZoomOut (right). Due to the sequencial
adding the last points can often not be placed correctly, lead-
ing to some extreme outliers. These can be easily removed
by using ZoomOut as post-processing.

the other hand, the temperature should not be too low so that
meaningful improvements to the subpermutation are possi-
ble. In our experiments we used a temperature of t = 0.01.

We pick possible transpositions randomly between
matched points on both shapes. The improvements are cal-
culated only with respect to the points on X that have a
correspondence on Y according to (8). Depending on the
temperature and the improvement the transposition is ac-
cepted. This is repeated 2.500 times. In the last SA phase
of the first insertion stage, we decrease the temperature to
t = 0 to move the system to a local optimum.

At the end of the algorithm, after all points were in-
serted, we evaluate how much each match in the current
(sub)correspondence π contributes to the objective (2) and
the worst 20% of contributors are marked as candidates for
refinement in a final SA phase with temperature t = 0. The
local contribution of x ∈ X can be calculated as:∑

x′∈UEX (x)

kX (x, x′)kY(y(x), y(x′)). (9)

We iterate through all refinement candidates x and check if
there are other refinement candidates y ∈ Ê(x) (i.e the en-
vironments of the points on X that correspond to points on
Y which are close to the correspondence of x on Y , see Sec-
tion 3.3) and check if a transposition of those pairs improves
their overall contribution.

3.5. Seed Generator

Our method needs an initial set of sparse seeds to start
the insertion process as described in Section 3.3. These can
either be given by the user or come from the seed generator.

The seed generator produces and evaluates a series of k-
submatchings (sets of k matches that are locally bijective)
called seeds. The best seed according to Eq (4) is used as
the initialization for the rest of the pipeline. The embed-
ding of new points, Eq. (8), relies on the fact that the initial
points are well distributed over the surface and therefore we

sample potential seeds with farthest point sampling. For in-
stance, when matching shapes resembling human bodies, a
promising seed should match points located on the limbs
of one body to the similar counterpart on the other. These
property should be kept in mind when running the rest of
the pipeline on arbitrary input matches.

We produce all seeds by sampling m distinct points via
farthest point sampling from each of the input shapes. These
are called MX and MY . There are m! possible correspon-
dences between MX and MY . However, it is unlikely that
any of them is completely meaningful because the point sets
were sampled independently of each other and the perfect
match might not have been sampled. To be more robust to
inconsistent samplings we only keep k < m of the candi-
dates. There are

(
m
k

)
many different k-sized subsets of an

m-sized set. Hence we can generate
(
m
k

)(
m
k

)
k! many dif-

ferent k-sized seeds from the candidate point sets on X and
Y . This works well because point at the tip of extremities
are the the furthest away from many subsets and sampled
early with a very high probability. In general, the differ-
ence between m and k should not be too large, as it dras-
tically increases the number of seeds that need to be evalu-
ated. In our experiments, we obtained good matchings for
seeds constructed with m = 4 and k = 3. See Figure 3 for
an example of the final seed.

4. Experiments
We show experiments evaluating the matching error of

our method in comparison to state-of-the-art methods on
popular data sets in Section 4.1 and an ablation study in
Section 4.2, as well as some qualitative examples. We eval-
uate our algorithm according to the Princeton benchmark
protocol, see [15]. If the matching produced by our algo-
rithm contains the pair (x, y), then we plot its accumulated
error ε(x) := dY(x, ŷ)/diam(Y), where diam(Y) is the di-
ameter of Y and the pair (x, ŷ) is given by a known opti-
mal matching. In the quantitative results we choose only to
non-learning methods to evaluate against to keep the results
comparable.

4.1. Quantitative Results

We evaluate our algorithm quantitatively on the TOSCA
dataset [7], the FAUST dataset [6] and the SHREC Con-
nectivity dataset [19]. The ground-truth correspondences
for all these datasets are known. The TOSCA dataset con-
sists of 8 classes of triangular meshes resembling animals
and humans in different positions and ranging from 3.000
to 50.000 vertices. The results can be seen in Figure 6.
The FAUST registration dataset contains 100 shapes from
10 people in different poses. See Figure 7 for our results in-
cluding results of the ablation study. The SHREC Connec-
tivity dataset contains 44 human shapes with a wide range
of resolutions and inconsistent meshings even within the
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Figure 5: Matching between a (downsampled) cat and a centaur from the TOSCA dataset. From left to right: original
coloring on the cat, our method before ZoomOut without any swapping (notice one wrong leg), with only greedy swapping
(zero temperature), with our proposed swapping (high to low temperature), final result after ZoomOut, ZoomOut on only 20
input matches. There are some incontinuities in the final solution due to very different shapes but our dense solution helps
guide ZoomOut a lot in this difficult case.
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Figure 6: Correspondence accuracy on the TOSCA dataset.
We compare against Functional maps, Blended Intrinsic
Maps, BCICP, Kernel Matching and SGMDS.

shape. This is a very challenging setup for many algorithms.
See Figure 8 for our results. We have used the seed gener-
ator with k = 3 and m = 4 in all evaluations. Some exem-
plary matchings produced by our algorithm can be seen and
are briefly discussed in Figure 3 and Figure 4.

4.2. Ablation Study

We test the influence of different parts of our framework
on the FAUST registrations [6]. In particular, we show how
removing the seed generator, the swapping steps and post-
processing with ZoomOut [20] changes the result.

Seed Generator. Our seed generator produces a sparse
initial seed for the framework, usually four matches. We re-
place these four matches with the top four similar matches
according to Heat Kernel Signature (HKS) [31] and SHOT
[32]. As seen in Figure 7 the result is considerably worse.
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Ours - descriptor seeds

ZoomOut only

ZoomOut - no flips

Figure 7: Correspondence accuracy on the FAUST regis-
trations. We test the impact of ZoomOut post-processing
on our method. Without any (red) our method includes
a lot of outliers in the last iterations. Both ZoomOut and
our method are purely intrinsic and cannot separate intrin-
sic symmetry flips. The yellow and green curves show the
results where symmetry mistakes were excluded.

A possible reason is that while the seed generator ensures
that the matches are well distributed and accurate, the de-
scriptor matches are only accurate but sometimes cluttered
together which is not beneficial for our insertion process.

Swapping. The swapping operations are performed with
a certain probability depending on the set temperature, see
Eq. (3). We test the influence of swapping and the tempera-
ture on our result. For that, we repeat the evaluation on the
Faust registration without any swapping, swapping at zero
temperature (basically a greedy improvement step) and with
high temperature. The results are shown in Table 1.
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No swapping Greedy Ours
w/o ZoomOut 0.047 0.042 0.041
with ZoomOut 0.042 0.0405 0.038

Table 1: Comparison of swapping strategies on the FAUST
registration dataset.

Postprocessing. We use ZoomOut [20] to post-process
our results. The main reason is that during the last few
insertion operations (when the majority of the shape is al-
ready filled) the optimal places according to Eq. (8) might
already be filled and a suboptimal choice has to be made.
See Figure 16 in the Appendix to see how the perfor-
mance drops when adding the last 10% of matches. Clus-
ters of wrong matches can only be rearranged with an un-
reasonable amount of swapping operations but are easily
fixed by a few iterations of ZoomOut. See Figure 4. To
show that our framework does not solely rely on ZoomOut,
we show ZoomOut directly applied on the initial matches
from the seed generator and an example of non-isometric
shapes where ZoomOut makes large mistakes without a re-
ally dense input from our framework (see Figure 5).

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Geodesic error

%
C

or
re

sp
on

de
nc

es

BCICP [25]

FM [23]
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Figure 8: Correspondence accuracy on the SHREC’19 Con-
nectivity dataset. We compare against Blended Intrinsic
Map, Functional Maps and BCICP. Kernel Matching and
SGMDS do not perform well on this kind of data. We reach
full performance (100%) long before the competitors.

5. Conclusion
We presented a probabilistic algorithm that can solve the

3D non-rigid correspondence problem on high-resolution
meshes and, to the best of our knowledge, the first appli-
cation of Simulated Annealing to QAPs on 3D meshes. Our
algorithm includes a novel seed generator that can produce
a very sparse initial correspondence but can also process a
given set of sparse input matches. Based on the sparse ini-
tialization we add new matches by optimizing the embed-

Figure 9: (Left) Example of a failure case of our method
on the FAUST registrations. The front and back side are
flipped. (Right) Failure when initializing our method with
seeds from descriptor similarity. The upper and lower part
of the body are not oriented the same way. This can happen
if the seeds are not well distributed on the surface.

Figure 10: (Left) Example of our results on a FAUST scan.
The shapes have over 100k vertices, a size that is normally
unfeasible for QAPs. (Right) Texture transfer between two
cats of the TOSCA dataset.

ding on the surface with respect to the matches in the cur-
rent solution. While this would usually requires the entire
geodesic distance matrix, we utilize locality sensitive hash-
ing to make the operations efficient. The intermediate and
final solutions are refined by applying Simulated Anneal-
ing, a local and probabilistic optimization that is also fast
and can recover from local optima. Finally, we post-process
our results with ZoomOut to remove outliers that appear
in the later insertion operations. Our experiments outper-
form several recent 3D correspondence methods and even
scale to shapes with more than 100k vertices. Although it
is already scalable, we could further improve the runtime
from O(n log(n)

√
n) to O(n log(n)) by introducing a hier-

archical structure of basis points and calculate the geodesics
with [9]. Additionally, we show that we can handle shapes
with very different resolution and vertex density due to our
sampling strategy, a case in which methods that optimize
Eq. (4) normally return clustered solutions.
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A. Locality Sensitive Hashing : Geodesic dis-
tances on the surface of a unit sphere

Let S be a set of n points that is uniformly sampled from
the surface of a sphere S. We first clarify what variables are
involved. To characterize a single point on the surface of
a unit sphere, it suffices to give two values, the azimuthal
angle θ ∈ [0, 2π] and the polar angle φ ∈ [0, π]. See Figure
7. For a point w on the unit sphere, we want to know the
density f(w) for a uniform distribution. It must hold that∫
S
fdA = 1. Since the area of the surface of a unit sphere

is 4π, i.e.
∫
S
dA = 4π, we know f(w) = 1

4π. Now, as

fdA = f(θ, φ)dθdφ (10)

we obtain f(θ, φ) = 1
4π sin(φ). We have the joint probabil-

ity function f(θ, φ), which can be marginalized into

f(θ) = 1
2π and f(φ) =

sin(φ)

2
. (11)

r

θ 

ϕ

Figure 11: Sphere coordinates: polar angle φ and azimuthal
angle θ

Let v be the north pole of the sphere, i.e. v = (0, 0). The
point w is given by (0, φ) for some polar angle φ. Then the
distance between v and w is exactly d(v, w) = φ. Let a new
point u be given by the angles (θ̂, φ̂). Then d(u, v) = φ̂.
To get the distance between w and u we need the (polar)
angle ψ between them, which can be obtained from the dot
product

w · u = cos(ψ) = cos(φ) cos(φ̂) + sin(φ) sin(φ̂) cos(θ̂)

and then d(w, u) = ψ. For the geodesic distance, the trian-
gle inequality holds. Therefore, we can write

φ ≤ φ̂+ cos−1(cos(φ) cos(φ̂) + sin(φ) sin(φ̂) cos(θ̂)).

Note that if θ̂ = 0, i.e. u lies on the shortest line connecting
w and v, then

cos−1(cos(φ) cos(φ̂) + sin(φ) sin(φ̂) cos(0))

= cos−1(cos(φ) cos(−φ̂)− sin(φ) sin(−φ̂))

= cos−1(cos(φ− φ̂)) = φ− φ̂

by the addition theorem for cosine and thus the inequality is
tight. Now suppose we sample u uniformly, i.e the density
of θ̂ is f(θ̂) = 1

2π and the density of φ̂ is f(φ̂) = 1
2 sin(φ̂),

then the random variable

R(φ̂, θ̂) := cos−1(cos(φ) cos(φ̂) + sin(φ) sin(φ̂) cos(θ̂))

gives the distance d(u,w). Consider the lower bound for
d(v, w), i.e.

Llower(φ, φ̂, θ̂) :=

|φ̂− cos−1(cos(φ) cos(φ̂) + sin(φ) sin(φ̂) cos(θ̂))|
≤ φ

and the probability that

φ ≤ Llower(φ, φ̂, θ̂) + τ

for fixed values of τ . Similarly, we define

φ ≤ cos−1(cos(φ) cos(φ̂) + sin(φ) sin(φ̂) cos(θ̂)) + φ

=: Lupper(φ, φ̂, θ̂) + φ

and are interested in the probability that

Lupper(φ, φ̂, θ̂)− τ ≤ φ.

For fixed φ this can be calculated numerically as seen in
Figure 8 for τ = 0.001. This gives us Pr[Lupper(φ, φ̂, θ̂) −
φ ≤ τ |φ] and Pr[φ − Llower(φ, φ̂, θ̂) ≤ τ |φ]. As seen in the
figure, the lower bound is good for small values of d(v, w),
i.e. small φ and bad for large d(v, w), whereas it is exactly
the opposite situation for the upper bound. Now consider
upper and lower bounds that depend on multiple points Z
with |Z| = n sampled from the surface of the sphere. Write

L∗lower(φ,Z) := max
z∈Z
|φz − cos−1(cos(φ) cos(φz)

+ sin(φ) sin(φz) cos(θz))|

and

L∗upper(φ,Z) := min
z∈Z

cos−1(cos(φ) cos(φz)

+ sin(φ) sin(φz) cos(θz)) + φz.

Then

Pr[L∗upper(φ,Z)− φ ≤ τ |φ]

=1−
∏
z∈Z

(1− Pr[Lupper(φ, φz, θz)− φ ≤ τ |φ])

and analogously for Pr[φ− L∗lower(φ,Z) ≤ τ |φ]. For |Z| =
500 the results are displayed in Figure 9. Assuming that
we know which of the two bounds performs better, we can

11



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

3DV
#241

3DV
#241

3DV 2020 Submission #241. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 12: Pr[Lupper(φ, φ̂, θ̂)− φ ≤ τ |φ] (upper bound) and
Pr[φ−Llower(φ, φ̂, θ̂) ≤ τ |φ] (lower bound) with τ = 0.001

Figure 13: Pr[L∗upper(φ,Z) − φ ≤ τ |φ] (upper bound) and
Pr[φ− L∗lower(φ,Z) ≤ τ |φ] (lower bound) with τ = 0.001

Figure 14: Difference of d(v, w) and L∗lower(φ,Z) (lower
bound) for different values of d(v, w) andZ with |Z| = 500
randomly sampled points on the surface. Analogously for
the upper bound.

approximate d(v, w) in the interval [d(v, w)−τ, d(v, w)+τ ]
with probabilities at least as high as shown in Figure 11.
This means that just given 500 completely random points

Figure 15: max(Pr[φ − L∗lower(φ,Z) ≤
τ |φ],Pr[L∗upper(φ,Z)− φ ≤ τ |φ]) with τ = 0.001

Z on the surface of a sphere and assuming that we know
which one of the upper and lower bound performs bet-
ter, we can approximate the distance d(x, y) between any
two points x, y in an interval [d(v, w) − 0.001, d(v, w) +
0.001] with probability greater than 98% by L∗lower(φ,Z)
and L∗upper(φ,Z). The assumption that we know which
bound performs better is not far-fetched, since the individ-
ual bounds Lupper(φ, φz, θz) and Llower(φ, φz, θz) will vary
drastically for z ∈ Z in case the bounds are bad.

In some cases, only a good approximation of distances
of points that are close to each other (e.g. kX or kY ) is
necessary, in this case the lower bound L∗lower(φ,Z) per-
forms very well. This is illustrated in Figure 10, which
shows the difference d(v, w) − L∗lower(φ,Z) for a random
Z with |Z| = 500. The approximations are almost perfect
for d(v, w) ≤ 2.5.

B. Quality during Insertion Process
We show the evolution of the error curve during the in-

sertion process. When inserting the last 10% of points it is
very likely that the immediate neighborhood of the best po-
tential match is already taken and an unfavorable point has
to be picked. This creates a lot of outliers in the end. We
stop the insertion process at 70% to circumvent this. There
is no significant difference in the final result between filling
70% or 90%.
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Figure 16: Evolution of the correspondence quality for one
FAUST pair with percentage of points matched. Due to in-
serting points wrt. (8) the error stays mostly constant dur-
ing insertion but during the last 10% the correct potential
matched might already be taken so a lot of outliers appear.
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