
Conjugate Product Graphs for Globally Optimal 2D-3D Shape Matching

Paul Roetzer1 Zorah Lähner2 Florian Bernard1

University of Bonn1 University of Siegen2

L
äh

ne
r[

26
]

O
ur

s

→

Results of Lähner et al. [26] (top) and ours (bottom) on the TOSCA dataset. (i) Matching with our approach (ii) 2D to 3D deformation transfer

Figure 1. We propose a novel formalism for globally optimal 2D contour to 3D shape matching based on shortest paths in the conjugate
product graph. For the first time we make it possible to incorporate higher-order costs within a shortest path-based matching formalism,
which in turn enables to integrate powerful priors, e.g. favouring locally rigid deformations. Left: Our method produces compelling 2D-
3D matchings that significantly outperform the previous state of the art [26]. Right: Sketch-based 2D to 3D deformation transfer by (i)
computing a 2D-3D matching using our approach, (ii) manipulating the 2D sketch, and then transferring 2D deformations to the 3D shape.

Abstract

We consider the problem of finding a continuous and
non-rigid matching between a 2D contour and a 3D mesh.
While such problems can be solved to global optimality by
finding a shortest path in the product graph between both
shapes, existing solutions heavily rely on unrealistic prior
assumptions to avoid degenerate solutions (e.g. knowledge
to which region of the 3D shape each point of the 2D con-
tour is matched). To address this, we propose a novel 2D-
3D shape matching formalism based on the conjugate prod-
uct graph between the 2D contour and the 3D shape. Do-
ing so allows us for the first time to consider higher-order
costs, i.e. defined for edge chains, as opposed to costs de-
fined for single edges. This offers substantially more flexi-
bility, which we utilise to incorporate a local rigidity prior.
By doing so, we effectively circumvent degenerate solutions
and thereby obtain smoother and more realistic matchings,
even when using only a one-dimensional feature descrip-
tor. Overall, our method finds globally optimal and contin-
uous 2D-3D matchings, has the same asymptotic complex-
ity as previous solutions, produces state-of-the-art results
for shape matching and is even capable of matching partial
shapes.

1. Introduction

In recent years the computer vision community has put
great effort into the matching of either two 2D or two 3D
shapes. However, the task of matching a 2D shape to a
3D shape is a problem that has received less attention, even
though it has a high practical relevance due to its wide va-
riety of applications. For example, 2D-3D shape matching
has the potential to bridge the gap between the 2D and 3D
domain by making the interaction with 3D objects more ac-
cessible to non-experts, who typically find the manipulation
of 2D shapes more intuitive. In addition to the modelling
and manipulation of 3D shapes using 2D sketches (see
Fig. 1), 2D-3D shape matching is relevant for 3D shape re-
trieval from 2D queries, for augmented reality interactions,
for 3D image analysis based on 2D images (e.g. matching
2D X-ray image segmentations to 3D CT image segmenta-
tions), or for multimodal 2D-3D shape analysis.

2D-3D shape matching can be framed as finding a con-
tinuous mapping of a 2D contour (e.g. a sketch of an an-
imal outline) to a 3D shape (e.g. a 3D model of this ani-
mal), see Fig. 1 (left). Here, the matched 2D contour that
is deformed to the 3D shape should resemble the original
2D shape as much as possible, i.e. spatial shape deforma-
tions should be small. While humans have an intuitive and
implicit understanding of good 2D-3D matchings, unfortu-

1

nately, it is non-trivial to transfer this understanding into
a rigorous mathematical framework: left-right flips are not
distinguishable; the 2D shape does not contain all parts of
the 3D shape (e.g. 2D shape of the wolf in Fig. 1 (left) con-
tains only two legs); usually there is more than one good
solution; and even slight deviations from a good matching
can either be another good matching or can be a bad match-
ing (e.g. zig-zagging on the 3D shape). In addition, phrasing
2D-3D shape matching as an optimisation problem requires
to compute features on both shapes that allow to distinguish
corresponding points from non-corresponding points – this
is particularly difficult as many of the widely-used features
for 2D or 3D shapes do not have a natural counterpart in the
other domain, and are thus not directly comparable.

Nevertheless, previous work shows that matching a 2D
contour to a 3D shape can be efficiently and globally opti-
mal solved based on shortest paths in product graphs [26].
However, existing solutions require strong, unnatural as-
sumptions (e.g. a coarse pre-matching, see Sec. 3.2) in or-
der to resolve (some of) the above-mentioned difficulties.
In this paper we present a novel graph-based formalism that
relaxes previous unnatural assumptions, which in turn al-
lows to solve a substantially more difficult setting of 2D-3D
shape matching. Our main contributions are:
• We present a novel matching formalism based on conju-

gate product graphs that allow to encode more expressive
higher-order information.

• For the first time this makes it possible to impose a local
rigidity prior that penalises deformations, which in turn
leads to previously unseen matching quality.

• Opposed to involved high-dimensional feature descrip-
tors that were previously used (e.g. spectral features), our
method requires only a simple one-dimensional feature
that encodes the local object thickness – a feature that
can naturally be defined for 2D and 3D shapes.

• Overall, our technical contributions allow us to solve 2D-
3D matching for the first time without the requirement of
a coarse pre-matching.

2. Related Work
In the following we summarise existing works that we

consider most relevant in the context of this paper.
Geometric Feature Descriptors. Most matching ap-

proaches rely on point-wise features to decide what are
good potential matches. For 2D contours, popular features
are cumulative angles [49], curvature [25, 48] and various
distance metrics [27, 31, 41, 48, 49]. One (for our work) no-
table example from the class of distance-based metrics is to
consider the distance from each point to other parts of the
contour along several fixed rays [31].

On 3D shapes, other feature types are predominant be-
cause the geometry is more complicated and 2D features
often do not have a direct equivalent in 3D. While curva-

ture does exist in 2D and in 3D, in 3D there are multiple
notions of curvature, like mean, Gaussian and directional
curvature. More popular are higher-dimensional features
like the heat kernel signature [45] or wave kernel signa-
ture [1], which are based on spectral properties of the 3D
surface, or the SHOT descriptor [47] based on the distri-
bution of normals in the neighbourhood of a vertex. Re-
cent approaches aim to learn suitable features for a specific
matching pipeline [28, 29]. Overall, there is a discrepancy
between 2D and 3D features, and even for features that
can conceptually be calculated for both domains, they are
typically not directly comparable. While [26] successfully
addresses 2D-3D shape retrieval based on spectral 2D and
3D features, our experiments confirm that these features are
insufficient to achieve precise correspondences. Similarly,
many approaches learn multi-modal or multi-dimensional
descriptors for entire shapes [16, 36, 50], but these are only
useful in retrieval settings and not capable of point-to-point
comparisons needed for finding reliable correspondences.
For the 2D-3D shape matching problem, the use of learning-
based methods is highly challenging, mainly due to the lack
of suitable training data, which is non-trivial to produce, as
well as the lack of similarity measures that do not require
ground truth correspondences. Thus, in this paper we in-
stead shift our focus on incorporating a powerful deforma-
tion prior, so that in turn substantially simpler feature de-
scriptors are sufficient. We demonstrate that this allows to
consider simple distance-based features which can be con-
sistently computed both in 2D and 3D.

2D-3D Matching. Matching pairs of 2D objects is well-
researched and it is widely known that respective solutions
can be represented as paths in a graph. With that, shortest
path algorithms can be used to efficiently find globally op-
timal solutions. This has for example been done for open
contours, known as dynamic time warping [40], and closed
contours [41], including invariance to scale and partiality
[31]. Similarly, it was shown that matching 2D contours
to 2D images (e.g. for template-based image segmentation)
can be addressed using a similar framework [42]. Matching
two 3D shapes is considerably harder as the solution is not a
shortest path anymore but rather a minimal surface embed-
ded in four-dimensional space. Thus, imposing constraints
on the continuity of the solution is not possible in an effi-
cient way [37, 53, 54]. While from an algorithmic perspec-
tive finding a 2D-3D matching is easier than the 3D-3D case
(as the former also amounts to a (cyclic) shortest path prob-
lem [26]), quantifying matching costs is significantly more
difficult for the 2D-3D case (cf. previous paragraph on fea-
ture descriptors). In this work we build upon the path-based
2D-3D matching formalism of [26] and propose a novel for-
malism that enables the use of higher-order costs (defined
for chains of edges, opposed to costs of single edges). In
turn, our formalism allows for the first time the incorpora-

2

tion of a spatial deformation prior, so that our framework
requires substantially less descriptive features – in fact, we
demonstrate that a one-dimensional distance-based feature
descriptor (which is consistent for 2D and 3D shapes) is
sufficient to successfully solve 2D-3D shape matching.

Extensions of Graph Representations. Graphs are
not only relevant for diverse subfields of visual computing,
such as e.g. image analysis [5, 7, 13, 22, 23, 34, 38, 39, 43],
recognition [9, 12], tracking [18, 56], or mesh process-
ing [4, 21, 26, 32], but also for a wide variety of other ap-
plication domains, for example in DNA research [11], lan-
guage processing [52], or social sciences [20]. In graph the-
ory, many graph extensions have been proposed, including
multilayer networks [24], dual graphs [15], hypergraphs [3],
and product graphs [14], to name just a few. The prod-
uct graph extends the concept of the Cartesian product (and
other types of products) to graphs by additionally encoding
neighbourhood information. This has been used in the con-
text of different matching problems, including 2D-2D [41],
3D-3D [53], and 2D-3D [26] settings. Another graph ex-
tension relevant for this paper is the conjugate graph (also
known as line graph), which encodes connectivity informa-
tion into the vertices instead of edges [15]. This has for ex-
ample been used for route planning [55] or graph link pre-
diction [8]. In this work, we propose to combine product
graphs with conjugate graphs (in fact we consider the con-
jugate graph of a product graph between two shapes) and
showcase that this substantially increases modelling expres-
siveness and flexibility, and therefore allows for globally
optimal 2D-3D shape matching.

3. Background & Notation
In this section we introduce our notation (also see

Tab. 1), conjugate graphs, and the formalism for the match-
ing of shapes as shortest path problem on a product graph.

Definition 1 (Directed Graph). A directed graph G is de-
fined as a tuple (VG , EG) of vertices VG and oriented edges
EG ⊂ VG × VG . Oriented edges means (v1, v2) ∈ EG does
not imply (v2, v1) ∈ EG .

We directly work with discrete graph-based representa-
tions for shapes, i.e. contours sampled at m many points
represent 2D shapes, and (manifold) triangular surface
meshes represent 3D shapes:

Definition 2 (2D Shape). We define a 2D shape (or contour)
M as a tuple (VM, EM) of m vertices VM and m oriented
edges EM ⊂ VM × VM s.t.M is a directed cycle graph.

Definition 3 (3D Shape). We define a 3D shape N as a
tuple (VN , EN) of vertices VN and oriented edges EN ⊂
VN×VN such thatN forms a 2D manifold in 3D space (tri-
angular surface mesh, possibly with multiple boundaries).

We also consider an extended edge set, which contains
all vertices represented as self-edges:

Definition 4 (Extended Set of Edges). For a (2D or 3D)
shape X = (VX , EX), we define the extended set of edges
E+X = EX ∪ {(a, a)| a ∈ VX } ⊂ VX × VX . We call the
additional edges degenerate edges.

Symbol Description
M = (VM, EM) 2D shape (closed contour)
N = (VN , EN) 3D shape (manifold triangular surface mesh)
eM, eN edge eM of contour, edge eN of mesh
E+
X extended set of edges of shape X∈{M,N}

P = (V, E) product graph of M×N with product ver-
tices V and product edges E

e, v edge e, vertex v of P
P∗ = (V∗, E∗) conjugate product graph of P with vertices

V∗ and edges E∗

e∗, v∗ edge e∗, vertex v∗ of P∗

Table 1. Summary of the notation used in this paper.

3.1. Conjugate Graphs

Definition 5 (Conjugate Graph [15]). The conjugate graph
G∗ of a directed graph G is defined as a tuple (V∗

G , E∗G) with

V∗
G = EG , E∗G = {

(
(v1, v2), (v2, v3)

)
∈ V∗

G×V∗
G}.

Intuitively, the edges of G become the vertices of G∗ and
the conjugate edges connect pairs of adjacent edges from G.
Fig. 2 illustrates the construction of the conjugate graph.

3

2

4

5

1

3, 4

4, 5
2, 3

1, 3

3

2

4

5

1

3, 4

4, 5
2, 3

1, 3

3

2

4

5

1

(c)(b)(a)

Figure 2. Illustration of the conjugate graph. (a) Input graph G.
(b) Each edge of G becomes a conjugate vertex (•). (c) The conju-
gate graph G∗ is now formed by connecting the newly introduced
vertices (•) by edges () according to Definition 5 (e.g. conjugate
vertex (1, 3) and (3, 4) are connected by a directed edge since they
are both adjacent to vertex 3 in G).

3.2. Matching Formalism

Next, we introduce the product graph G between a 2D
contour and a 3D shape, and we summarise Lähner et
al.’s [26] representation of a 2D-3D shape matching as
shortest (cyclic) path in the product graph.

3

Definition 6 (Product Graph). The product graph P of the
2D contourM and the 3D shape N is a tuple (VP , EP) of
product vertices VP and product edges EP , where

VP = VM × VN ,

EP = {
(
eM1 , eN2

)
∈ VP × VP | eM1 ∈ E+M, eN2 ∈ E+N ,

eM1 or eN2 non-deg.}.

The product graph P is visualised in Fig. 3 (left). To
simplify the notation, we will refer to the vertices and edges
of the product graph only as V and E for the remainder of
the paper. A matching between the 2D contour and the 3D
shape can be represented as the subset C ⊂ EM×EN where
tuples in C indicate which edges of the 2D contour and 3D
shape are in correspondence. Desirable properties of such
matchings are that a) each edge onM is matched to at least
one edge onN , and b) the matching is continuous, i.e. if two
edges onM are adjacent, their matches onN should also be
adjacent. These properties can be guaranteed if the solution
is a (cyclic) path that goes through all layers of the product
graph (cf. Fig. 3). A path that minimises costs defined on
the (product graph) edges can efficiently be computed based
on Dijkstra’s algorithm [10]. To ensure the path is cyclic,
Dijkstra’s algorithm needs to be run multiple times (once
for each vertex of the 3D mesh); however, the number of
Dijkstra runs can be drastically reduced based on a simple
branch and bound strategy, see [26].

Despite the theoretical elegance of Lähner et al.’s for-
malism, a major limitation is that shortest paths only take
into account costs of individual edges. With that, the
approach is not capable of penalising local deformations
induced by a matching, this is only possible with pairs
of product graph edges. Instead, the authors use high-
dimensional features in combination with knowledge about
pre-matched segmentations between 2D and 3D shapes.
While such a pre-matching drastically reduces the search
space and avoids many degenerate solutions, the knowledge
of such a pre-matching is typically not available in practice.

4. Our 2D-3D Shape Matching Approach

In the following, we present our solution for 2D-3D
shape matching which allows the incorporation of higher-
order edge costs. With this, spatial deformations can be nat-
urally penalised within a shortest path matching framework
while still finding a globally optimal matching in polyno-
mial time (with the same asymptotic complexity as [26]),
see Section 3.2. We emphasise that we address a signifi-
cantly more difficult problem setting than [26] since we do
not rely on the unrealistic assumption that a coarse 2D-3D
pre-matching is available. A summary of our notation can
be found in Tab. 1.

4.1. Conjugate Product Graphs

Our formalism builds upon conjugate product graphs,
i.e. the conjugate graph (Definition 5) of a product graph
(Definition 6). We refer to the conjugate product graph
as P∗ = (V∗, E∗). Here, edges in the product graph
become vertices in the conjugate product graph and are
connected based on the adjacency of vertices in the prod-
uct graph, see Definition 5. Thus, an edge e∗ ∈ E∗ in
P∗ has the scope of two edges in the product graph P ,
i.e. e∗ = (e1, e2), e1, e2 ∈ E , see Fig. 4. In turn, this
enables the definition of cost functions that consider two
product graph edges simultaneously. We note that higher-
order costs can also be defined by repeating the conjugation
process, e.g. an edge in the conjugate of the conjugate prod-
uct graph is formed by three edges of the product graph so
that costs can be defined for triplets of product graph edges
(and so on). For brevity and a simpler exposure, in the fol-
lowing we restrict ourselves w.l.o.g. to second-order costs.

Figure 3. Illustration of the product graph P (left) and the con-
jugate product graph P∗ (right) for a water drop shape. Left:
the product graph P is structured into layers (•,•,•), where each
layer represents a single vertex on M and the entire 3D shape N .
Right: we illustrate (part of) the conjugate product graph P∗ for
the three-edge path • • in P (highlighted in pink), which
becomes • • • in P∗. Conjugate product vertices • are shown
in orange and conjugate product edges are shown in pink.

4.2. Cost Function

We define our cost function d : E∗ → R for every edge
e∗ = (v∗1 , v

∗
2) = (e1, e2) ∈ E∗ in the conjugate product

graph as
d(e∗) = ddata(e

∗) + dreg(e
∗). (1)

ddata is the data term which measures the similarity be-
tween the product edges based on feature descriptors. dreg
is a local rigidity regulariser which ensures that adjacent
edges on the 2D contour are deformed similarly to adjacent

4

e∗

e2 (= v∗2)

eN2eM2

e1 (= v∗1)

eN1eM1

P∗ = (V∗, E∗)

P = (V, E)

M,N

Figure 4. Hierachical relationship between edges of the involved
graphs. An edge e∗ ∈ E∗ of the conjugate product graph P∗ is
formed by two edges e1, e2 ∈ E of the product graph P (which
correspond to vertices v∗1 , v∗2 ∈ V∗ in the conjugate product graph
P∗, respectively). Each edge e• of P is formed by one edge eM• ∈
E+
M and one edge eN• ∈ E+

N of the shapes M and N , respectively.

elements on the 3D shape. We first describe the data term
followed by the local rigidity regulariser.

Data Term. A major difficulty when comparing 2D and
3D shapes is that many of the existing geometric feature
descriptors cannot be consistently defined for 2D and 3D
shapes (e.g. although the notion of curvature exists for both
shapes, in 3D the curvature is direction-dependent, which
makes it difficult to compare 2D and 3D curvature). We
build a simple one-dimensional descriptor based on the ob-
servation that corresponding points i ∈ M and j ∈ N of
the same shape class should have a similar distance to the
other side going through the interior of the respective shape,
see Fig. 5a. As such, we consider local thickness as feature
descriptor. It is computed as follows:
• For a vertex i ∈ M, the 2D local thickness ℓ2D

i can be
found by inverting its vertex-normal and finding the (first)
intersection with the contour [31].

• For a vertex j ∈ N , the 3D local thickness ℓ3D
j can be

computed by finding the (first) intersection of ray from
j in the opposite vertex-normal direction with N . We
employ a triangle-ray-intersection algorithm for this [33].

With that, we can define the local thickness difference for
each conjugate product edge e∗ = (e1, e2) ∈ E∗, so that
our data term ddata(e

∗) reads

ddata(e
∗) = ψ1

(
|ℓ3D
i − ℓ3D

j |) , (2)

where ℓ3D
i and ℓ3D

j are local thickness values at vertices
i ∈ VM and j ∈ VN on the 2D and 3D shape, respec-
tively. Since we want to avoid taking into account the same
local thickness value multiple times, we compute the lo-
cal thickness difference ddata(e

∗) at a conjugate product ver-
tex e∗ solely with the local thickness at vertex i shared by
eM1 and eM2 , and respectively the local thickness at vertex
j shared by eN1 and eN2 . Since potentially there may be
large outliers in the local thickness near areas of large de-
formations, we additionally apply the function ψ1(·) to the
absolute value of the local thickness difference, which can
for example be chosen to be a robust loss function. We have
found that despite its simplicity, local thickness is an effec-
tive one-dimensional feature descriptor that, in combination

(a) (b)

Figure 5. (a) The local thickness ℓp for the point p is found by
intersecting the ray from p in the opposite normal direction (light
red) with the shape. (b) Illustration of finding the rotation Re that
aligns the 3D coordinate frame defined for a 2D contour edge eM

and the 3D coordinate frame defined for a 3D shape edge eN . The
black vector shows the shape edge, the red vector the normal and
the green vector their cross product.

with our local rigidity regulariser, enables faithful 2D-3D
shape matchings, see Sec. 5.

Regularisation. Inspired by [4, 44], we employ a reg-
ularisation term which favours deformations that are lo-
cally rigid. To compute the regularisation of the conju-
gate product edge e∗ = (e1, e2) =

(
(eM1 , eN1), (eM2 , eN2)

)
(cf. Fig. 4), we define a local 3D coordinate frame for each
of the four (shape) edges eM1 , eN1 , eM2 , eN2 . To this end, we
embed the 2D contour into 3D space by adding a third con-
stant coordinate. With that, for both 2D contour and 3D
shape, we can define a local 3D coordinate frame based on
the normalised edge direction, outward-pointing unit nor-
mal, and their cross product. Subsequently, we solve the
orthogonal Procrustes problem [46] in order to compute the
rotation Re1 that aligns the 3D coordinate frame of eM1 to
the 3D coordinate frame of eN1 , and the rotation Re2 that
aligns the 3D coordinate frame of eM2 to the coordinate of
eN2 , see Fig. 5b. In presence of degenerate edges we simply
use the previous edge, see also Sec. 4.3.

By computing the geodesic distance between Re1 and
Re2 on the Lie group SO(3), we can quantify the amount
of non-rigidity of the matching that is induced by e∗. For
computational efficiency, we consider unit quaternion rep-
resentations qe• of Re• , so that our local rigidity regularisa-
tion term dreg for the conjugate product edge e∗ reads

dreg(e
∗) = ψ2

(
arccos (⟨qe1 , qe2⟩)

)
, (3)

where ⟨·, ·⟩ is the inner product for quaternions [17]. ψ2(·)
is again a robust loss function, see Sec. 4.3.

4.3. Theoretical Analysis and Implementation

In the following we provide a theoretical analysis and
additional implementation details.

Cyclic Shortest Paths. To find a cyclic shortest path,
we can run an ordinary (non-cyclic) shortest path algorithm
(e.g. Dijkstra’s algorithm [10]) |VN | many times. To this
end, we duplicate the last layers in the conjugate product
graph (see Fig. 3), disconnect the duplicate layers from each
other, and for each vertex from the ‘upper duplicate’ find the

5

shortest path to the corresponding vertex in the ‘lower du-
plicate’. The globally optimal shortest cyclic path is now
formed by the minimum among the |VN | individual paths.
To reduce the number of shortest paths that need to be com-
puted, we can instead resort to a more efficient branch-and-
bound strategy, we refer to the Appendix for details.

Degenerate Cases. Conjugate product vertices contain-
ing degenerate edges of the 3D shape do not contain direc-
tional information on the 3D shape which we need to com-
pute dreg. We inject the relevant directional information into
the conjugate product graph by introducing new conjugate
product vertices that reflect (non-degenerate) edges on the
3D shape adjacent to respective degenerate 3D edge.

Pruning. To decrease the size of the conjugate prod-
uct graph P∗, we apply a pruning strategy. To this end,
we prune conjugate product edges that reflect local turning
points on the 3D shape since such paths represent undesir-
able matchings. In addition, we prune edges that first rep-
resent a degenerate edge of M, followed by a degenerate
edge of N (or vice-versa). Such combinations are equiva-
lent to a matching with two non-degenerate edges. Overall,
our pruning reduces the graph size (and thus runtime) and
excludes obvious non-desirable solutions.

Runtime Analysis. The runtime of our algorithm de-
pends on the size of the conjugate product graph and the
number of shortest path runs. The number of vertices in P∗

corresponds to the number of edges in P . The number of
edges inP∗ can be approximated by c·|VM|·

(
|EN |+|VN |

)
where c is a constant that is related to the maximum number
of neighbours of the vertices inN . Tab. 2 sums up the sizes
of the product graph P and the conjugate product graph P∗.

vertices # edges

P |VM| · |VN | |VM| ·
(
2|EN |+ |VN |

)
P∗ |VM| ·

(
2|EN |+ |VN |

)
c · |VM| ·

(
2|EN |+ |VN |

)
Table 2. Comparison of sizes of the product graph P and the con-
jugate product graph P∗.

Using |EN | ≈ 3|VN | [6] shows that the conjugate prod-
uct graph P∗ has 7 times more vertices and c ≈ 11 (see Ap-
pendix) times more edges than the product graph P , which
shows that asymptotically both graphs have the same size.
In the worst case O(|VN |) shortest path problems – one for
each vertex in N – have to be solved. Together with the
complexity of each Dijkstra run the final runtime can be es-
timated asO

(
|VM| · |VN |2 · log(|VN |)

)
, which is the same

as in [26]. We provide more details in the Appendix.
Implementation Details. We implement the shortest

path algorithm in C++ wrapped in a MATLAB [30] mex-
function. Computation of quantities on meshes, mesh sim-
plification as well as local thickness computation are done
using [19, 30]. For all experiments we choose ψ1(x) to

be the robust loss function of [2], for which we choose
α1 = −2 and c1 = 0.15. For ψ2(x) we also choose the
same loss function with α2 = 0.7 and c2 = 0.6, but with
a cubic bowl instead of a quadratic bowl as we want to en-
sure that small errors due to discretisation artefacts are not
penalised. The choice of different ψ1(x) and ψ2(x) is re-
quired since ddata and dreg have different ranges.

5. Experiments
In this section we compare our method on two datasets,

conduct an ablation study, and showcase results on partial
shapes and for sketch-based shape manipulation. We em-
phasise that the matching of contours to 3D meshes is ill-
posed: the same contour can arise from different config-
urations, i.e. the ground-truth is not necessarily unique, the
space of solutions that seem natural is even bigger, and eval-
uation criteria that capture this non-uniqueness do not exist.
Datasets. We evaluate on the following two datasets:
• TOSCA 2D-3D [26]: 80 shapes of 9 different classes

(humans, animals, etc.) in different poses. For each class
exists at least one 2D shape.

• FAUST 2D-3D [26]: 100 human shapes in different
poses subdivided into 10 classes. Each class has one 2D
shape. Ground-truth correspondences between 2D and
3D are available for all instances.

Both datasets contain segmentation information across all
shapes which form consistent 2D part to 3D part mappings.

Competing Approach. The only other method able to
produce continuous matchings between 2D contours and
3D shapes is [26]. Due to their weaker model expressive-
ness that prevents the incorporation of a deformation prior,
they use global spectral features and a pre-matched segmen-
tation as additional feature in order to prevent degenerate
solutions (e.g. collapsing). To enable a fair comparison, for
both methods we provide results with and without this pre-
matching. However, we consider the pre-matching as unre-
alistic prior knowledge, and therefore regard the cases with-
out pre-matching as main results. As we show in Fig. 1, our
results are superior without the segmentation term even in
comparison to [26] using the segmentation term.

5.1. Matching

Next we evaluate our approach on the task of 2D-3D
shape matching. First, we introduce a new error metric de-
signed for the ambiguous setting of matching a contour onto
a mesh. Subsequently, we compare quantitatively and qual-
itatively to the approach by Lähner et al. [26].

Error Metric. We use two different error metrics: a)
geodesic error and b) segmentation error. We only evalu-
ate the geodesic error on FAUST due to the lack of 2D-3D
ground truth correspondences in the TOSCA dataset. Addi-
tionally, there exist many valid matchings that may not cor-

6

0 0.25 0.5 0.75 1
60

70

80

90

100

Geodesic Error Threshold

%
C

or
re

ct
S

eg
m

en
t

TOSCA

Lähner et al.: 0.89
Ours: 0.93
(Lähner-Seg): 1
(Ours-Seg): 1

0 0.25 0.5 0.75 1
60

70

80

90

100

Geodesic Error Threshold
%

C
or

re
ct

S
eg

m
en

t

FAUST

Lähner et al.: 0.91
Ours: 0.98
(Lähner-Seg): 1
(Ours-Seg): 1

0 0.25 0.5 0.75 1
0

20

40

60

80

100

Geodesic Error Threshold

%
C

or
re

ct
M

at
ch

in
gs

FAUST

Lähner et al.: 0.77
Ours: 0.85
(Lähner-Seg): 0.94
(Ours-Seg): 0.95

0 0.25 0.5 0.75 1
0

20

40

60

80

100

Geodesic Error Threshold

%
C

or
re

ct
M

at
ch

in
gs

FAUST w/o Flips

Lähner et al.: 0.79
Ours: 0.94
(Lähner-Seg): 0.94
(Ours-Seg): 0.95

Figure 6. Quantitative comparison for the FAUST and TOSCA datasets. Left: Cumulative segmentation errors. The y-axis shows the
percentage of points in the correct segment, and the x-axis the geodesic error threshold. Vacuously, when integrating the segmentation
information into the optimisation (methods with suffix ‘-Seg’, dashed lines), the results are perfect for both methods. Right: Cumulative
geodesic errors on FAUST with and without left-right flips (manually removed for all approaches), which confirms that in many cases our
method finds plausible solutions but does not resolve the intrinsic symmetry ambiguity. The y-axis shows the percentage of points below
the x-axis threshold. We can see that our method consistently outperforms Lähner et al. [26]. Scores shown in the legends are respective
areas under the curves.

respond to the ground truth because the problem is ill-posed
as explained above. Hence, we aim to derive a more robust
quantitative evaluation for 2D-3D matchings. For that, we
utilise part-based shape segmentations, which are available
for all classes in the FAUST and TOSCA datasets and are
generally consistent between 2D and 3D shapes. We argue
that a good solution must have the same segmentation in the
target domain, i.e. on the 3D shape, as in the source domain,
i.e. on the 2D shape. For both we plot the cumulative curves
measuring for each geodesic error value the percentage of
matches with an error lower than this.

Geodesic Error. Let (x, y) ∈ C ⊂ VM × VN be a
computed match and ŷ be the ground-truth match of x. The
normalised geodesic error of this matching is defined as

εgeo(x, y) =
distN (y, ŷ)

diam(N)
. (4)

Here distN : N ×N → R+
0 is the geodesic distance on N

and diam(N) = max
x,y∈N

distN (x, y).

Segmentation Error. Let σM(x) be the source segment
of its matched point y ∈ N and let σN (y) be its target
segment. We define the segmentation error as

εseg(x, y) = min
y′∈N ,

σN (y′)=σM(x)

distN (y, y′)

diam(N)
. (5)

For shapes with symmetries or other ambiguities, we choose
the best of all plausible segmentation combinations.

Quantitative Matching Results. In Fig. 6 (left) we
show that our method outperforms the competing method
by Lähner et al. [26] by a great margin in terms of the
segmentation error, both on FAUST on TOSCA. Since for
FAUST ground truth is available, in Fig. 6 (right) we show
the percentage of correct matchings, there our method is su-
perior. In addition, when left-right-flips (which form plau-
sible solutions that stem from shape symmmetries) are re-

↖ ↖ ↖

Figure 7. Qualitative results of our method on FAUST. We can
see the occurrence of left-right-flips (indicated by ↖) which nev-
ertheless can be considered as plausible matchings.

moved, our method (without pre-matching) is on par with
the approach by Lähner et al. that uses pre-matching.

Qualitative Matching Results. We also compare our
method qualitatively to Lähner et al. [26]. Even though our
method is not using segmentation information, matchings
computed with our approach are consistently of better qual-
ity and reflect a more plausible path on the 3D shape, i.e.
are locally straight, see Fig. 1, Fig. 7 and Fig. 8.

5.2. Ablation Study

We evaluate the performance of different parts of our
cost function in Tab. 3 as well as the performance of lo-
cal rigidity when using multidimensional spectral features.

5.3. Partial Shapes

We show experiments on partial shapes, for which we
removed parts of either the 2D or 3D shape in FAUST, see
Fig. 9. Our approach is substantially more robust in the
partial setting compared to Lähner et al. [26], likely due to

7

2D
Sh

ap
e

L
äh

ne
re

ta
l.

O
ur

s

Figure 8. Qualitative comparison of the method by Lähner et al. [26] (second row) and our approach (third row) on TOSCA. Our approach
results in more plausible matchings despite that Lähner et al. use a coarse segmentation-based pre-matching. Our local rigidity regulariser,
which is enabled by our novel conjugate product graph formalism, ensures that resulting paths on 3D target shapes are much smoother.

Method AUC ↑

Local Rigidity & Spectral 0.95
Local Rigidity 0.76
Local Thickness 0.92
Local Rigid. & Local Thick., (ψ1(x) = ψ2(x) = |x|) 0.89
Ours 0.98

Table 3. Ablation study on FAUST. The score is the area under
the curve (AUC) of the cumulative segmentation errors. All intro-
duced components increase performance. Our one-dimensional
local thickness outperforms the multi-dimensional spectral fea-
tures due to different intrinsic properties of 2D and 3D shapes.

the locality of our features and strong spatial regularisation,
in contrast to the global spectral features of [26].

5.4. Sketch-Based 3D Shape Manipulation

We show the high quality of our matchings by per-
formimg 2D sketch-based 3D shape manipulation. After
deforming the contour, the 3D shape is brought into a corre-
sponding pose through as-rigid-as-possible shape deforma-
tion [44], see Fig. 1. Details can be found in the Appendix.

6. Discussion & Limitations

Our experimental results confirm that conjugate product
graphs enable 2D-3D shape matching without the need of
a coarse pre-matching. Even though we compute results to
global optimality, scenarios like symmetries (e.g. for human
shapes) lead to ambiguities that are challenging to reflect in
the cost function, which may result in matchings that col-
lapse to one side of the 3D shape, see Fig. 7 (bottom-right).
Although our method has the same asymptotic complexity
as [26], in practice the computation is slower due to the con-
jugate product graph being larger (by a constant factor) than
the product graph (cf. Tab. 2, also see Appendix).

2D
Sh

ap
e

L
äh

ne
re

ta
l.

O
ur

s

Figure 9. Qualitative comparison of Lähner et al. [26] and ours
on partial FAUST shapes. The global features of [26] result in
poor matchings in scenarios without full shape, whereas we use
local features and thus obtain valid partial matchings.

7. Conclusion

We presented conjugate product graphs for 2D-3D shape
matching, which for the first time allows for the incorpora-
tion of higher-order costs within path-based matching for-
malisms. Our novel concept significantly increases model
expressiveness and flexibility, allowing to inject desirable
properties, like local rigidity regularisation, into respective
optimisation problems. Our results show significant im-
provements in challenging matching settings, even allow-
ing for 2D sketch-based 3D shape manipulation. Since our
powerful higher-order regularisation allows to get rid of the
need for global features, our method is the first that solves
partial 2D-3D shape matching. We believe that our work is
of high relevance to the field of shape analysis, and hope to
inspire more work on inter-dimensional applications.

8

Acknowledgements
PR is funded by the TRA Modellling (University of

Bonn) as part of the Excellence Strategy of the federal and
state governments. ZL is funded by a KI-Starter grant of
the Ministry of Culture and Science of the State of North
Rhine-Westphalia.

References
[1] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers.

Pose-Consistent 3D Shape Segmentation Based on a Quan-
tum Mechanical Feature Descriptor. In Pattern Recognition.
Springer Berlin Heidelberg, 2011. 2

[2] Jonathan T Barron. A general and adaptive robust loss func-
tion. In CVPR, 2019. 6

[3] Claude Berge. Hypergraphs: combinatorics of finite sets.
Elsevier, 1984. 3

[4] Florian Bernard, Frank R Schmidt, Johan Thunberg, and
Daniel Cremers. A combinatorial solution to non-rigid 3d
shape-to-image matching. In CVPR, 2017. 3, 5

[5] Florian Bernard, Christian Theobalt, and Michael Moeller.
Ds*: Tighter lifting-free convex relaxations for quadratic
matching problems. In CVPR, 2018. 3

[6] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and
Bruno Lévy. Polygon Mesh Processing. CRC press, 2010.
6, 12

[7] Yuri Boykov and Gareth Funka-Lea. Graph cuts and efficient
nd image segmentation. International journal of computer
vision, 70(2):109–131, 2006. 3

[8] Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph
neural networks for link prediction. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021. 3

[9] Donatello Conte, Pasquale Foggia, Carlo Sansone, and
Mario Vento. Thirty years of graph matching in pattern
recognition. International journal of pattern recognition and
artificial intelligence, 2004. 3

[10] Edsger W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1, 1959. 4, 5

[11] Hossein Eghdami and Majid Darehmiraki. Application of
dna computing in graph theory. Artificial Intelligence Re-
view, 2012. 3

[12] Pedro F Felzenszwalb and Daniel P Huttenlocher. Pictorial
structures for object recognition. International journal of
computer vision, 2005. 3

[13] Stuart Geman and Donald Geman. Stochastic relaxation,
gibbs distributions, and the bayesian restoration of images.
IEEE Transactions on pattern analysis and machine intelli-
gence, 1984. 3

[14] Richard H Hammack, Wilfried Imrich, Sandi Klavžar, Wil-
fried Imrich, and Sandi Klavžar. Handbook of product
graphs. CRC press Boca Raton, 2011. 3

[15] Frank Harary. Graph Theory. Addison-Wesley, 1969. 3
[16] Robert Herzog, Daniel Mewes, Michael Wand, Leonidas

Guibas, and Hans-Peter Seidel. Lesss: Learned shared se-
mantic spaces for relating multi-modal representations of 3d
shapes. Computer Graphics Forum, 2015. 2

[17] Du Q Huynh. Metrics for 3d rotations: Comparison and anal-
ysis. Journal of Mathematical Imaging and Vision, 2009. 5

[18] Umar Iqbal, Anton Milan, and Juergen Gall. Posetrack: Joint
multi-person pose estimation and tracking. In CVPR, 2017.
3

[19] Alec Jacobson et al. gptoolbox: Geometry processing tool-
box, 2021. http://github.com/alecjacobson/gptoolbox. 6, 13

[20] Long Jin, Yang Chen, Tianyi Wang, Pan Hui, and Athana-
sios V Vasilakos. Understanding user behavior in online so-
cial networks: A survey. IEEE communications magazine,
2013. 3

[21] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh.
Learning 3d mesh segmentation and labeling. In ACM SIG-
GRAPH, 2010. 3

[22] Jörg Hendrik Kappes, Markus Speth, Bjoern Andres, Ger-
hard Reinelt, and Christoph Schnörr. Globally optimal image
partitioning by multicuts. In International Workshop on En-
ergy Minimization Methods in Computer Vision and Pattern
Recognition. Springer, 2011. 3

[23] Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guil-
laume Lavoue, Thomas Brox, and Bjoern Andres. Efficient
decomposition of image and mesh graphs by lifted multicuts.
In CVPR, 2015. 3

[24] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P
Gleeson, Yamir Moreno, and Mason A Porter. Multilayer
networks. Journal of complex networks, 2014. 3

[25] Zhang Kun, Ma Xiao, and Li Xinguo. Shape matching based
on multi-scale invariant features. IEEE Access, 2019. 2

[26] Zorah Lähner, Emanuele Rodolà, Frank R Schmidt,
Michael M Bronstein, and Daniel Cremers. Efficient glob-
ally optimal 2d-to-3d deformable shape matching. In CVPR,
2016. 1, 2, 3, 4, 6, 7, 8, 11, 12, 13

[27] Haibin Ling and David W. Jacobs. Shape classification using
the inner-distance. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2007. 2

[28] O. Litany, T. Remez, E. Rodolà, A. M. Bronstein, and M. M.
Bronstein. Deep functional maps: Structured prediction for
dense shape correspondence. In ICCV, 2017. 2

[29] Riccardo Marin, Marie-Julie Rakotosaona, Simone Melzi,
and Maks Ovsjanikov. Correspondence learning via linearly-
invariant embedding. In NeuRIPS, 2020. 2

[30] The Mathworks, Inc., Natick, Massachusetts. MATLAB ver-
sion 9.13.0.2049777 (R2022b), 2022. 6

[31] Damien Michel, Iasonas Oikonomidis, and Antonis Argyros.
Scale invariant and deformation tolerant partial shape match-
ing. Image and Vision Computing, 2011. 2, 5

[32] Joseph SB Mitchell, David M Mount, and Christos H Pa-
padimitriou. The discrete geodesic problem. SIAM Journal
on Computing, 1987. 3

[33] Tomas Möller and Ben Trumbore. Fast, minimum storage
ray/triangle intersection. In ACM SIGGRAPH 2005 Courses.
2005. 5

[34] Eric N Mortensen and William A Barrett. Intelligent scis-
sors for image composition. In Proceedings of the 22nd an-
nual conference on Computer graphics and interactive tech-
niques, 1995. 3

9

[35] Per-Olof Persson and Gilbert Strang. A simple mesh gener-
ator in matlab. SIAM review, 2004. 13

[36] Jie Qin, Shuaihang Yuan, Jiaxin Chen, Boulbaba Ben Amor,
Yi Fang, Nhat Hoang-Xuan, Chi-Bien Chu, Khoi-Nguyen
Nguyen-Ngoc, Thien-Tri Cao, Nhat-Khang Ngo, Tuan-Luc
Huynh, Hai-Dang Nguyen, Minh-Triet Tran, Haoyang Luo,
Jianning Wang, Zheng Zhang, Zihao Xin, Yang Wang, Feng
Wang, Ying Tang, Haiqin Chen, Yan Wang, Qunying Zhou,
Ji Zhang, and Hongyuan Wang. Shrec’22 track: Sketch-
based 3d shape retrieval in the wild. Computers & Graphics,
2022. 2

[37] Paul Roetzer, Paul Swoboda, Daniel Cremers, and Florian
Bernard. A scalable combinatorial solver for elastic geomet-
rically consistent 3d shape matching. In CVPR, 2022. 2

[38] Stefan Roth and Michael J Black. Fields of experts: A frame-
work for learning image priors. In CVPR. IEEE, 2005. 3

[39] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
“grabcut” interactive foreground extraction using iterated
graph cuts. ACM transactions on graphics (TOG), 2004. 3

[40] Hiroaki Sakoe and Seibi Chiba. Dynamic programming al-
gorithm optimization for spoken word recognition. IEEE
transactions on acoustics, speech, and signal processing,
1978. 2

[41] Frank R Schmidt, Dirk Farin, and Daniel Cremers. Fast
matching of planar shapes in sub-cubic runtime. In IEEE
International Conference on Computer Vision, 2007. 2, 3

[42] Thomas Schoenemann, Frank R. Schmidt, and Daniel Cre-
mers. Image segmentation with elastic shape priors via
global geodesics in product spaces. In BMVC, 2008. 2

[43] Jianbo Shi and Jitendra Malik. Normalized cuts and image
segmentation. IEEE Transactions on pattern analysis and
machine intelligence, 2000. 3

[44] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface
modeling. In SGP, 2007. 5, 8, 13

[45] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise
and provably informative multi-scale signature based on heat
diffusion. In SGP, 2009. 2

[46] Jos MF Ten Berge. Orthogonal procrustes rotation for two
or more matrices. Psychometrika, 1977. 5, 13

[47] Federico Tombari, Samuele Salti, and Luigi Di Stefano.
Unique signatures of histograms for local surface descrip-
tion. In ECCV, 2010. 2

[48] Remco C Veltkamp. Shape matching: Similarity measures
and algorithms. In Proceedings International Conference on
Shape Modeling and Applications, 2001. 2

[49] Remco C Veltkamp and Michiel Hagedoorn. State of the art
in shape matching. Principles of visual information retrieval,
2001. 2

[50] Fang Wang, Le Kang, and Yi Li. Sketch-based 3d shape re-
trieval using convolutional neural networks. In CVPR, 2015.
2

[51] Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Ka-
van. Linear subspace design for real-time shape deformation.
TOG, 2015. 13

[52] Theresa Wilson, Janyce Wiebe, and Paul Hoffmann. Recog-
nizing contextual polarity in phrase-level sentiment analysis.
In HLT and EMNLP, 2005. 3

[53] Thomas Windheuser, Ulrich Schlickewei, Frank R. Schmidt,
and Daniel Cremers. Geometrically consistent elastic match-
ing of 3D shapes: A linear programming solution. In ICCV,
2011. 2, 3

[54] Thomas Windheuser, Ulrich Schlickwei, Frank R. Schimdt,
and Daniel Cremers. Large-Scale Integer Linear Program-
ming for Orientation Preserving 3D Shape Matching. Com-
puter Graphics Forum, 2011. 2

[55] Stephan Winter. Modeling costs of turns in route planning.
GeoInformatica, 2002. 3

[56] Li Zhang, Yuan Li, and Ramakant Nevatia. Global data as-
sociation for multi-object tracking using network flows. In
CVPR, 2008. 3

10

Appendix
A. Segmentation Pre-Matching

In Fig. 10, we visualise the pre-matching which is used
by the approach in [26]. It is obvious that the injection of
such information into the objective function makes finding
valid solutions substantially easier.

Figure 10. Visualisation of pre-matched segmentation information
on cat from the TOSCA dataset. Different colours encode differ-
ent segments, while darkest blue encodes the transition between
different segments.

For a fair comparison, in addition to our method that
does not use this information, we also evaluate ”Ours-Seg.”,
in which we incorporate the above segmentation informa-
tion as an additional feature descriptor, see [26] for details.

B. Branch and Bound Algorithm
Algorithm 1 describes our optimisation strategy. We

adapt the branch and bound algorithm introduced in [26] to
conjugate product graphs and implement runtime improve-
ments by increasing chances of finding tighter upper bounds
earlier.

The final goal of the optimisation is to find a cyclic
path with minimal cost. However, Dijkstra’s algorithm only
finds shortest (but not necessarily cyclic) paths. To that end,
we represent the (conjugate) product graph as sequential
graph, in which the first and last layers are duplicates, such
that a path going from the same vertex in the first and last
layer corresponds to a cyclic path.

Thus, the cyclic path with minimal cost can be found
by computing the shortest path for every vertex on the first
layer to every respective vertex on the last layer, and subse-
quently choosing among the computed paths the one with
minimal cost. In general, this requires to solve a total
of 2|EN | + |VN | (ordinary) shortest path problems, and
is computationally more expensive than the branch-and-
bound strategy that we pursue.

The main idea of branch-and-bound is to iteratively sub-
divide the search space, while tightening upper and lower
bounds using the results of previous iterations. In that
sense, instead of searching for shortest paths from each ver-
tex on the first layer to each respective vertex on the last
layer, we search for the shortest path from a set of vertices
B ⊂ V∗ on the first layer to the respective set of vertices

B on the last layer, see Fig. 11 (left). There is no guaran-
tee that the path C = (v∗1 , . . . , v

∗
|C|) from B (first layer) to

its duplicate B (last layer) with minimal energy is indeed
cyclic, i.e. that the final vertex v∗|C| in the last layer is in-
deed the same as the starting vertex v∗1 in the first layer. If
C is not cyclic, we partition B into smaller, disjunct subsets
B1 and B2 (with B1 ∪ B2 = B and B1 ∩ B2 = ∅) until
a cyclic path is found (this is the branching strategy, see
Fig. 11). The partitioning is done by calculating Voronoi
cells around edges eN1 and eN|C| on 3D shape assuming eN1
and eN|C| are not identical (where the conjugate product ver-
tex v∗1 = (eM1 , eN1) contains edge eN1 on 3D shape and con-
jugate product vertex v∗|C| = (eM|C|, e

N
|C|) contains edge eN|C|

on 3D shape). If eN1 and eN|C| are identical we partition ac-
cording to B1 = B \ {v∗|C|} and B2 = {v∗|C|}.

The path cost dC of non-cyclic paths (i.e. v∗1 ̸= v∗|C|) is
a lower bound b(·) on the path cost of the globally optimal
cyclic path. Whenever v∗1 and v∗|C| are equal (meaning that

(duplicate)

Figure 11. Illustration of the branching strategy in Algorithm 1.
First, the shortest path from all vertices in B on the first layer to
the same vertices on the duplicate first layer (which amounts to
the last layer) is computed. The resulting shortest path from B
on the first layer to B on the last layer might not start and end on
the same vertex (since we are searching for a shortest path from
a set of vertices to a set of vertices). Whenever this is the case,
B is partitioned into two sets B1 and B2, for which in subsequent
iterations shortest paths are computed analogously as for B.

C is a cyclic path), an upper bound bupper is found, which
might already be the globally optimal path, but can only be
identified as such if all other branches do not yield cyclic
paths with lower costs. Hence, the algorithm has to explore
all other branches, which in the worst case are as many as
there are vertices on one layer (i.e. 2|EN |+ |VN | many).

While searching for the optimal path, the algorithm only
explores paths with cost dC < bupper and thus performance
can be improved if tighter upper bounds bupper are found as
early as possible. We improve the branch-and-bound algo-
rithm of [26] by computing all paths Call of a branch, and
then search within these for cyclic paths to find lower val-

11

ues of the upper bound bupper earlier. We want to point out
that no additional computational effort is required to com-
pute Call using the implementation of [26], since all paths
are already available (see Fig. 13 for runtime comparisons).

C. Number of Conjugate Product Edges
As mentioned in the main paper, the conjugate product

graph P∗ has 7 times more vertices than P and c ≈ 11
times more edges. In the following we derive c. To this
end, we count outgoing edges of each conjugate product
vertex (which is sufficient since P∗ is cyclic). Further, we
assume that on average each vertex j of the 3D shape N is
connected to 6 edges [6]. Thus, each (directed) edge on 3D
shape is connected to 5 other directed edges via their shared
vertex, see Fig. 12.

Figure 12. Subset of a triangle mesh. Directed pink edge is con-
nected to all directed black edges via blue vertex.

In conclusion, each conjugate product vertex is con-
nected to 5 conjugate product vertices on the same layer
(reflecting degenerate 2D conjugate product vertices) and
6 conjugate product vertices on the next layer (reflecting 5
non-degenerate conjugate product vertices and 1 degener-
ate 3D conjugate product vertex). In total, each conjugate
product vertex is connected to c ≈ 11 other conjugate prod-
uct vertices. In combination with the number of vertices of
the conjugate product graph |V∗| = |VM| ·

(
2|EN |+ |VN |

)
we obtain the number of edges of P∗.

D. Runtime
D.1. Runtime Analysis

In the following we estimate runtime complexity of our
branch-and-bound algorithm for conjugate product graphs.
To this end, we use |EN | ≈ 3|VN | [6] to obtain |V∗| ≈
7 · |VM||VN | and |E∗| ≈ c · 7 · |VM||VN |.

The runtime of Dijkstra on an arbitrary graph G =
(VG , EG) isO

(
(|EG |+ |VG |) · log(|VG |)

)
where (|EG |+ |VG |)

indicates the number of update steps to be made, and
log(|VG |) indicates the complexity to access the priority
heap that is used to keep track of the next nodes to be up-
dated.

In our case, the number of update steps is (|E∗|+|V∗|) ≈
c ·14 · |VM||VN | (with c ≈ 11). We make use of the strictly

Input : 2D shapeM = (VM, EM),
3D shape N = (VN , EN)

Output: Optimal Path Copt ⊂ V∗

// First branch is complete first layer

B0 ← {v∗ = (eM, eN) | i0 = 0, eM = (i0, i1)};
// Initialise bounds and branches

b(B0)← 0;
bupper ←∞;
BBranches ← B0;
// Run until no branches with a gap between

lower and upper bound exist

while min
B∈BBranches

b(B) < bupper do

B ← argmin
B∈BBranches

b(B);

BBranches ← BBranches \ B;
Compute all paths Call = {C1, C2, . . . } with path

cost dCi
< bupper starting and ending in B;

if Call = ∅ then
// No path which meets dC < bupper

continue;

C ← argmin
C∈Call

dC ;

// Check if current path is cyclic

if v∗1 = v∗|C| then
if dC < bupper then

bupper ← dC ;
Copt ← C;

else
// Cut current branch into two parts

if eN1 = eN|C| then
B1 ← B \ {v∗|C|};
B2 ← {v∗|C|};

else
Compute B1,B2 as Voronoi cells around
eN1 and eN|C| respectively;

// Add new branches

BBranches ← BBranches ∪ {B1,B2};
// Update lower bounds

b(B1) = b(B2) = dC ;
// Try to tighten upper bound

for C ← Call do
if v∗1 = v∗|C| then

if dC < bupper then
bupper ← dC ;
Copt ← C;

Algorithm 1: Branch and Bound for Cyclic Shortest Path on
(Conjugate) Product Graph

directed order of the |VM| layers of P∗, which allows to
use a heap that scales with the number of vertices of one
layer O(|VN |) (also see [26]). In summary, the runtime

12

complexity of a single Dijkstra run in our conjugate product
graph P∗ is O(|VM||VN | log(|VN |)).

To find the optimal cyclic path among all possible
cyclic paths, we run Dijkstra not just once but at most
O(|VN |) times (without any branch-and-bound optimi-
sation), which leads to a final runtime complexity of
O(|VM||VN |2 log(|VN |)).

D.2. Runtime Comparison

In Fig. 13, we show the median runtime for the approach
by Lähner et al. [26] and our approach. The plot shows that
both approaches have the same asymptotic behaviour. Due
to the use of the larger conjugate product graph P∗ in com-
parison to product graph P (see also C), our approach takes
by a constant factor more time to compute results. For a fair
comparison with equal graph sizes, we additionally include
computation times of our approach on the product graph P
which shows the improved performance when using Algo-
rithm 1. Nevertheless, we emphasise that our approach (on
P∗) still requires polynomial time while being the only one
that is able to compute 2D-3D matchings without the need
for pre-matching.

0.5 1 1.5

10−2

10−1

100

101

102

Vertices in product space |V| · 106

R
un

tim
e

[m
in

]

Runtime Comparison

Lähner et al.
Ours on P∗
Ours on P

Figure 13. Runtime comparison of the approach by Lähner et
al. [26] and ours. We fix the size of various 3D shapes, gradually
increase the number of vertices of respective 2D shapes (by sub-
sampling) and measure times to compute matching results both
with our approach and the approach of Lähner et al. Results of
our approach on the conjugate product graph P∗ are not directly
comparable since P∗ contains more vertices and edges than P .
For a fair comparison, we include runtimes of our approach on the
product graph P that show the improved performance which Al-
gorithm 1 offers. The x-axis shows the number of vertices |V| of
the product graph P (to which the number of vertices |V∗| of the
conjugate product graph is related to via |V∗| ≈ 7|V|). The y-axis
shows the runtime in minutes. Points (light colours) are individ-
ual experiments, while thick lines are median runtimes. Spikes in
computation time stem from a varying number of branches needed
to compute the optimal path.

E. 2D to 3D Deformation Transfer
We compute 2D to 3D deformation transfer by applying

the following steps:

Mean Edge Length 2D Shape AUC ↑

0.5·ē 0.96
0.75·ē 0.97

1·ē 0.98
1.25·ē 0.97
1.5·ē 0.95

Table 4. Ablation study on the sensitivity of our approach to
different discretisations. The score is the area under the curve
(AUC) of the cumulative segmentation errors. We fix the discreti-
sation of 3D shape and vary edge lengths of 2D shape. ē depicts
the mean edge length of 3D shape.

2D-3D Matching We find a matching between 2D and
3D shape using our approach.

2D Deformation We deform the 2D shape by using a
skeleton which allows for different articulation of arms, legs
and head. In combination with biharmonic weights [19,51],
we obtain a smooth deformation of the 2D shape (we tessel-
late the interior of the contour for biharmonic weight com-
putation [35]).

2D-3D Alignment We find the optimal alignment T 3D
2D

of 2D shape and matched vertices on 3D shape by introduc-
ing a third, constant coordinate for 2D vertices and solving
the (orthogonal) Procrustes problem [46].

3D Deformation We apply the deformation to the 3D
shape by transforming the deformation on the 2D shape us-
ing T 3D

2D , applying the transformed deformation to a small
subset of 3D vertices (chosen by furthest distance) and us-
ing their new positions as a constraint when deforming all
other vertices of the 3D shape with the as-rigid-as-possible
method of [44].

F. Ablation: Discretisation
In Tab. 4 we evaluate the robustness of our method w.r.t.

to different discretisations. For all our experiments in the
main paper we reduce influence of discretisation by deci-
mating 3D shapes to half of their original resolution, which
results in more uniform edge lengths [19]. Additionally,
we re-sample 2D shapes with edge lengths according to the
mean edge length of the decimated 3D shape.

G. Qualitative Results on FAUST
In Fig. 14 we show additional qualititve results.

13

↖ ↖ ↖

↖ ↖
Figure 14. Qualitative results on instances of FAUST dataset.
We can see that left-right-flips occur (indicated with ↖) which
nevertheless are plausible matchings.

14

